Optimizing Kernel Ridge Regression for remote sensing problems

Gonzalo Mateo-García, Valero Laparra
Luis Gómez-Chova
Image Processing Laboratory (IPL), UVEG, Spain

gonzalo.mateo-garcia@uv.es | http://isp.uv.es
Remote sensing \rightarrow Biophysical parameter estimation
Nitrogen Dioxide

[Source https://www.esa.int/spaceinimages/Images/2017/12/Sentinel-5P_sees_nitrogen_dioxide_over_Europe]
Tree cover

(Hansen et al 2013)
Surface Temperature

ERA Interim ECMWF model
We need functions that map satellite measures to biophysical parameters that are **accurate** and **fast**.
We need functions that map satellite measures to biophysical parameters that are *accurate* and *fast*.

- Physical models
We need functions that map satellite measures to biophysical parameters that are **accurate** and **fast**

- Physical models
- Simultaneous measures \rightarrow **Regression**
We need functions that map satellite measures to biophysical parameters that are **accurate** and **fast**

- Physical models
- Simultaneous measures \rightarrow **Regression**
- Physical model slow \rightarrow **Regression to build emulator**
We need functions that map satellite measures to biophysical parameters that are **accurate** and **fast**

- Physical models
- Simultaneous measures \rightarrow **Regression**
- Physical model slow \rightarrow **Regression to build emulator**
- Physical model forward direction \rightarrow **Regression for model inversion**
Statistical Regression methods: \(\mathcal{D} = \{x_i, y_i\}_{i=1}^N \)

Among regression methods: **kernel methods** and kernel ridge regression:
Introduction

Statistical Regression methods: \(\mathcal{D} = \{x_i, y_i\}_{i=1}^N \)
Among regression methods: **kernel methods** and kernel ridge regression:

- KRR provides **non-linear** solutions for regression problems.
Introduction

Statistical Regression methods: $D = \{x_i, y_i\}_{i=1}^{N}$
Among regression methods: **kernel methods** and kernel ridge regression:

- KRR provides **non-linear** solutions for regression problems.
- **Kernel version** of regularized **linear regression** (ridge regression).
Introduction

Statistical Regression methods: \(D = \{x_i, y_i\}_{i=1}^{N} \)
Among regression methods: **kernel methods** and kernel ridge regression:

- **KRR** provides **non-linear** solutions for regression problems.
- **Kernel version** of regularized **linear regression** (ridge regression).
- **Computationally demanding** when the number of training instances increases.
Introduction

Statistical Regression methods: \(\mathcal{D} = \{x_i, y_i\}_{i=1}^{N} \)

Among regression methods: **kernel methods** and kernel ridge regression:

- KRR provides **non-linear** solutions for regression problems.
- **Kernel version** of regularized **linear regression** (ridge regression).
- **Computationally demanding** when the number of training instances increases.
- Due to the **growth of datasets**, kernel methods have been overshadowed by Neural Networks and tree methods (e.g. random forest, gradient boosting).
Introduction

Statistical Regression methods: \(\mathcal{D} = \{x_i, y_i\}_{i=1}^{N} \)
Among regression methods: kernel methods and kernel ridge regression:

- KRR provides non-linear solutions for regression problems.
- Kernel version of regularized linear regression (ridge regression).
- Computationally demanding when the number of training instances increases.
- Due to the growth of datasets, kernel methods have been overshadowed by Neural Networks and tree methods (e.g. random forest, gradient boosting).

Research question: Can we modify kernel methods to take advantage of large remote sensing datasets?
\begin{itemize}
\item \(\mathcal{D} = \{ \mathbf{x}_i, y_i \}_{i=1}^N \), \(\mathbf{x}_i \in \mathbb{R}^D, y_i \in \mathbb{R} \). We want \(f \in \mathcal{F} \) minimizes:
\end{itemize}

\[
J(f) = \sum_{i=1}^{N} (f(\mathbf{x}_i) - y_i)^2 + \lambda \|f\|_{\mathcal{F}}^2
\]
KRR

\[\mathcal{D} = \{x_i, y_i\}_{i=1}^N, \ x_i \in \mathbb{R}^D, \ y_i \in \mathbb{R}. \]
We want \(f \in \mathcal{F} \) minimizes:

\[J(f) = \sum_{i=1}^{N} (f(x_i) - y_i)^2 + \lambda \|f\|_{\mathcal{F}}^2 \]

The Representer Theorem (Schölkopf et. al 2001)

\[f^*(x) = \sum_{i=1}^{N} \alpha_i k(x_i, x) = \begin{bmatrix} k(x, X) \end{bmatrix} \begin{bmatrix} \alpha \end{bmatrix}_{N \times 1}, \]

Kernel function

\[k(x_i, x_j) = \exp(-\gamma \|x_i - x_j\|^2) \] Radial Basis Function (rbf)

\[\alpha^* = \left(K_{NN} + \lambda I \right)^{-1} y. \]
Computational Cost

\[\alpha^* = (K_{NN} + \lambda I)^{-1} y. \]

\[K_{NN} = \begin{pmatrix}
 k(x_1, x_1) & k(x_1, x_2) & \ldots & k(x_1, x_N) \\
k(x_2, x_1) & k(x_2, x_2) & \ldots & \vdots \\
\vdots & \vdots & \ddots & \vdots \\
k(x_N, x_1) & \ldots & \ldots & k(x_N, x_N)
\end{pmatrix} \]

- Store \(N \times N \) matrix. \(\mathcal{O}(N^2) \)
- Invert \(K_{NN} \) matrix. \(\mathcal{O}(N^3) \)
- Predict new point \(\mathcal{O}(D \times N) \)
Computational Cost

- Store $N \times N$ matrix. $\mathcal{O}(N^2)$
- Invert K_{NN} matrix. $\mathcal{O}(N^3)$
- Predict new point $\mathcal{O}(D \times N)$
Solution: select $M << N$ points from $\mathcal{D} = (X, y)$ $\mathcal{D}_u = (X_u, y_u)$ and discard rest.

KRR

$$f^*(x) = \sum_{i=1}^{N} \alpha_i k(x_i, x) = k(x, X) \alpha$$

$$J(\alpha) = \|K_{NN} \alpha - y\|^2 + \lambda \alpha^\top K_{NN} \alpha$$

$$\Rightarrow \alpha^* = (K_{NN} + \lambda I)^{-1} y$$

Comp. Cost: $\mathcal{O}(N^3)$

SoD

$$f^*(x) = \sum_{i=1}^{M} \alpha_i k(x_i, x) = k(x, X_u) \alpha_u$$

$$J(\alpha_u) = \|K_{MM} \alpha_u - y_u\|^2 + \lambda \alpha_u^\top K_{MM} \alpha_u$$

$$\alpha_{SoD} = (K_{MM} + \lambda I)^{-1} y_u$$

Comp. Cost: $\mathcal{O}(M^3)$
Solution: select $M << N$ points from $\mathcal{D} = (X, y)$ $\mathcal{D}_u = (X_u, y_u)$ and discard rest.

\begin{align*}
\text{SoD} & \\
\hat{f}(x) &= \sum_{i=1}^{M} \alpha_i k(x_i, x) = k(x, X_u) \alpha_u \\
J(\alpha_u) &= \|K_{MM}\alpha_u - y_u\|^2 + \lambda\alpha_u^\top K_{MM}\alpha_u \\
\alpha_{SoD} &= (K_{MM} + \lambda I)^{-1} y_u \\
\text{Comp. Cost: } &\mathcal{O}(M^3)
\end{align*}
Solution: select $M << N$ points from $\mathcal{D} = (X, y)$ $\mathcal{D}_u = (X_u, y_u)$ and discard rest.

SoD

\[
\begin{aligned}
\alpha^*_{SoD} &= (K_{MM} + \lambda I)^{-1} y_u \\
\mathcal{O}(M^3)
\end{aligned}
\]
Subset of Data (SoD)

Solution: select $M << N$ points from $D = (X, y)$ $D_u = (X_u, y_u)$ and discard rest.

\[
\text{SoD} \quad f^*(x) = \sum_{i=1}^{M} \alpha_i k(x_i, x) = k(x, X_u) \alpha_u
\]

\[
J(\alpha_u) = \|K_{MM} \alpha_u - y_u\|^2 + \lambda \alpha_u^\top K_{MM} \alpha_u
\]

\[
\alpha_{SoD} = (K_{MM} + \lambda I)^{-1} y_u
\]

Comp. Cost: $O(M^3)$
Subset of Data (SoD)

Solution: select $M << N$ points from $\mathcal{D} = (X, y) \quad \mathcal{D}_u = (X_u, y_u)$ and discard rest.

Error KRR: 0.009

Error SoD: 1.02
Solution: select $M << N$ points from $\mathcal{D} = (X, y)$ $\mathcal{D}_u = (X_{u}, y_{u})$ and discard rest.

Error KRR: 0.009
Error SoD: 1.02

Problem: we ignore most of the data!
Nyström (Williams and Seeger 2000)

Solution: select $M << N$ BUT optimize w.r.t. all the data:

\[
\begin{align*}
\text{KRR} & & \\
\quad f^*(x) &= \sum_{i=1}^{N} \alpha_i k(x_i, x) = \underbrace{k(x, X)}_{1 \times N} \underbrace{\alpha}_{N \times 1} \\
J(\alpha) &= \|K_{NN}\alpha - y\|^2 + \lambda \alpha^\top K_{NN} \alpha \\
\implies \alpha^* &= (K_{NN} + \lambda I)^{-1} y \\
\text{Comp. Cost: } \mathcal{O}(N^3)
\end{align*}
\]

\[
\begin{align*}
\text{Nyström} & & \\
\quad f^*(x) &= \sum_{i=1}^{M} \alpha_i k(x_i, x) = \underbrace{k(x, X_u)}_{M \times 1} \underbrace{\alpha_u}_{1 \times M} \\
J(\alpha_u) &= \|K_{NM}\alpha_u - y\|^2 + \lambda \alpha_u^\top K_{MM} \alpha_u \\
\alpha_{\text{Nyström}} &= (K_{MN}K_{NM} + \lambda K_{MM})^{-1} K_{MN}y \\
\text{Comp. Cost: } \mathcal{O}(NM^2 + M^3)
\end{align*}
\]
Nyström (Williams and Seeger 2000)

Solution: select $M << N$ BUT optimize w.r.t. all the data:

SoD

\[
f^*(x) = \sum_{i=1}^{M} \alpha_i k(x_i, x) = k(x, \mathbf{X}_u) \mathbf{\alpha}_u
\]

\[
J(\mathbf{\alpha}_u) = \|K_{MM} \mathbf{\alpha}_u - y_u\|^2 + \lambda \mathbf{\alpha}_u^T K_{MM} \mathbf{\alpha}_u
\]

\[
\mathbf{\alpha}_{SoD} = (K_{MM} + \lambda I)^{-1} y_u
\]

Comp. Cost: $\mathcal{O}(M^3)$

Nyström

\[
f^*(x) = \sum_{i=1}^{M} \alpha_i k(x_i, x) = k(x, \mathbf{X}_u) \mathbf{\alpha}_u
\]

\[
J(\mathbf{\alpha}_u) = \|K_{NM} \mathbf{\alpha}_u - y\|^2 + \lambda \mathbf{\alpha}_u^T K_{MM} \mathbf{\alpha}_u
\]

\[
\mathbf{\alpha}_{Nyström} = (K_{MN} K_{NM} + \lambda K_{MM})^{-1} K_{MN} y
\]

Comp. Cost: $\mathcal{O}(NM^2 + M^3)$
Nyström (Williams and Seeger 2000)

Solution: select $M << N$ BUT optimize w.r.t. all the data:

$$f^*(x) = \sum_{i=1}^{M} \alpha_i k(x_i, x) = k(x, X_u) \alpha_u$$

$$J(\alpha_u) = \|K_{NM} \alpha_u - y\|^2 + \lambda \alpha_u^T K_{MM} \alpha_u$$

$$\alpha_{Nyström} = \left(K_{MN} K_{NM} + \lambda K_{MM} \right)^{-1} K_{MN} y$$

Comp. Cost: $\mathcal{O}(NM^2 + M^3)$
Nyström (Williams and Seeger 2000)

Solution: select $M << N$ BUT optimize w.r.t. all the data:

$$f^*(x) = \sum_{i=1}^{M} \alpha_i k(x_i, x) = k(x, X_u) \alpha_u$$

$$J(\alpha_u) = \|K_{NM} \alpha_u - y\|^2 + \lambda \alpha_u^T K_{MM} \alpha_u$$

$$\alpha_{Nyström} = (K_{MN} K_{NM} + \lambda K_{MM})^{-1} K_{MNY}$$

Comp. Cost: $O(NM^2 + M^3)$

Error KRR: 0.009
Error SoD: 1.02
Error Nyström: 0.73
Nyström (Williams and Seeger 2000)

Solution: select $M << N$ BUT optimize w.r.t. all the data:

- Error KRR: 0.009
- Error SoD: 1.02
- Error Nyström: 0.73

Nyström

$$f^*(x) = \sum_{i=1}^{M} \alpha_i k(x_i, x) = k(x, X_u) \alpha_u$$

$$J(\alpha_u) = \|K_{NM} \alpha_u - y\|^2 + \lambda \alpha_u^T K_{MM} \alpha_u$$

$$\alpha_{Nyström} = (K_{MN} K_{NM} + \lambda K_{MM})^{-1} K_{MNY}$$

- Comp. Cost: $\mathcal{O}(NM^2 + M^3)$

Problem: very restrictive to sampled X_u observations
Optimized KRR (OKRR)

Solution: optimize w.r.t. all the data both α_u and X_u.

KRR

$$f^*(x) = \sum_{i=1}^{N} \alpha_i k(x_i, x) = k(x, X) \alpha$$

$$J(\alpha) = \|K_{NN}\alpha - y\|^2 + \lambda \alpha^\top K_{NN} \alpha$$

$$\Rightarrow \alpha^* = \left(\frac{1}{N \times N} K_{NN} + \lambda I\right)^{-1} y$$

Comp. Cost: $O(N^3)$

OKRR

$$f^*(x) = \sum_{i=1}^{M} \alpha_i k(x_i, x) = k(x, X_u) \alpha_u$$

$$J(\alpha_u, X_u) = \|K_{NM}\alpha_u - y\|^2 + \lambda \alpha_u^\top K_{MM} \alpha_u$$

Optimize $J(\alpha_u, X_u)$ using stochastic gradient descent (SGD)

Comp. Cost each SGD step: $O(M^2)$
Optimized KRR (OKRR)

Solution: optimize w.r.t. all the data both α_u and X_u.

$$f^*(x) = \sum_{i=1}^{M} \alpha_i k(x_i, x) = \underbrace{k(x, X_u)}_{1 \times M} \underbrace{\alpha_u}_{M \times 1}$$

$$J(\alpha_u, X_u) = \|K_{NM}\alpha_u - y\|^2 + \lambda \alpha_u^T K_{MM} \alpha_u$$

- $\alpha_u(0) = \alpha_{SoD}$
- $X_u(0) = X_u$
- $\alpha_u(t+1) = \alpha_u(t) + \nabla_{\alpha_u} J(\alpha_u(t), X_u(t))$
- $X_u(t+1) = X_u(t) + \nabla_{X_u} J(\alpha_u(t), X_u(t))$
Optimized KRR (OKRR)

Solution: optimize w.r.t. all the data both α_u and X_u.

Start with SoD solution

OKRR

$$f^*(x) = \sum_{i=1}^{M} \alpha_i k(x_i, x) = k(x, X_u) \alpha_u$$

$$J(\alpha_u, X_u) = \|K_{NM}\alpha_u - y\|^2 + \lambda \alpha_u^T K_{MM} \alpha_u$$

$$\alpha_u(0) = \alpha_{SoD}$$

$$X_u(0) = X_u$$

$$\alpha_u(t + 1) = \alpha_u(t) + \nabla_{\alpha_u} J(\alpha_u(t), X_u(t))$$

$$X_u(t + 1) = X_u(t) + \nabla_{X_u} J(\alpha_u(t), X_u(t))$$
Optimized KRR (OKRR)

Solution: optimize w.r.t. all the data both α_u and X_u.

$$f^*(x) = \sum_{i=1}^{M} \alpha_i k(x_i, x) = k(x, X_u) \alpha_u$$

$$J(\alpha_u, X_u) = \|K_{NM}\alpha_u - y\|^2 + \lambda \alpha_u^\top K_{MM} \alpha_u$$

$$\alpha_u(0) = \alpha_{SoD}$$

$$X_u(0) = X_u$$

$$\alpha_u(t + 1) = \alpha_u(t) + \nabla_{\alpha_u} J(\alpha_u(t), X_u(t))$$

$$X_u(t + 1) = X_u(t) + \nabla_{X_u} J(\alpha_u(t), X_u(t))$$
Optimized KRR (OKRR)

Solution: optimize w.r.t. all the data both α_u and X_u.

$$f^*(x) = \sum_{i=1}^{M} \alpha_i k(x_i, x) = k(x, X_u) \alpha_u$$

$$J(\alpha_u, X_u) = \| K_{NM} \alpha_u - y \|^2 + \lambda \alpha_u^\top K_{MM} \alpha_u$$

Error KRR: 0.009
Error SoD: 1.02
Error Nyström: 0.73
Error OKRR: 0.015
OKRR

- Fast training time. It does not depend on N ($O(M^2)$ each SGD update).
- More flexible functions than Nyström.
- More parameters to fit ($X_u: M \times D$ matrix and $\alpha_u: M$ vector)
- Leverage automatic differentiation tools like tensorflow.
- Fast prediction time ($O(MD)$)
- Related with Sparse Gaussian Processes (SGPs) methods: (Quiñonero-Candela et al. 2005), (Snelson and Ghahramani 2005), (Titsias 2009) and (Hensman et. al 2013). Fourier random features (Rahimi and Recht 2007).
- Available at: https://github.com/gonzmg88/obfkrr
Input Data

- Infrared atmospheric sounding interferometer (IASI) instrument on-board the MetOp polar orbiting satellite.
- IASI measures in the infrared part of the electromagnetic spectrum at a horizontal resolution of 12 km (swath width 2,200 km).
- Spectral range between 645 and 2760 cm$^{-1}$ yielding 8461 spectral channels.

Global Earth coverage every 12 hours, 14 orbits. Each orbit 100,000 hyperpixels.
Output Data

Surface temperature which is obtained from the ERA Interim model from the European Center for Medium-Range Weather Forecast (ECMWF).
Experimental setup

Preprocessing:
- We took 12 orbits, we used 6 for training and 6 for testing.
- PCA to reduce the spectral dimensionality: $8461 \rightarrow 50,10$.

We compare 4 different methods:
1. Linear Regression
2. Subset of Data
3. Nystrom
4. OKRR

Hyperparameters of the kernel (γ) and regularization (λ) optimized by cross validation.
Experimental setup

Preprocessing:
- We took 12 orbits, we used 6 for training and 6 for testing.
- PCA to reduce the spectral dimensionality: $8461 \rightarrow 50,10$.

We compare 4 different methods:
1. Linear Regression
2. Subset of Data
3. Nystrom
4. OKRR

Hyperparameters of the kernel (γ) and regularization (λ) optimized by cross validation.
Quantitative results using 500 basis ($M = 500, D = 50$):

<table>
<thead>
<tr>
<th>Method</th>
<th>Root Mean Square Error (RMSE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear Regression (LR)</td>
<td>6.22 K</td>
</tr>
<tr>
<td>Subset of Data</td>
<td>5.67 K</td>
</tr>
<tr>
<td>Nystrom</td>
<td>4.95 K</td>
</tr>
<tr>
<td>OKRR</td>
<td>4.95 K</td>
</tr>
</tbody>
</table>

Quantitative results using 50 basis ($M = 50, D = 10$):

<table>
<thead>
<tr>
<th>Method</th>
<th>Root Mean Square Error (RMSE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear Regression (LR)</td>
<td>8.52 K</td>
</tr>
<tr>
<td>Subset of Data</td>
<td>9.08 K</td>
</tr>
<tr>
<td>Nystrom</td>
<td>5.78 K</td>
</tr>
<tr>
<td>OKRR</td>
<td>5.18 K</td>
</tr>
</tbody>
</table>
Results

Linear Regression

Subset of Data

OKRR
Results
Results

Subset of Data

degrees (K)
Results
Conclusion and future work

Conclusions:
- Presented an extension of KRR (OKRR) that can be trained with SGD without constraints in the amount of available training data.
- Higher number of trainable parameters \rightarrow higher flexibility.
- Tested on surface temperature retrieval using IASI data.

Future work:
- Theoretical and empirical comparison with Sparse Gaussian Processes (SGPs).
- Comparisons in terms of training time and prediction time.
Conclusion and future work

Conclusions:
- Presented an extension of KRR (OKRR) that can be trained with SGD without constraints in the amount of available training data.
- Higher number of trainable parameters \rightarrow higher flexibility.
- Tested on surface temperature retrieval using IASI data.

Future work:
- Theoretical and empirical comparison with Sparse Gaussian Processes ($SGPs$).
- Comparisons in terms of training time and prediction time.
Conclusions:
- Presented an extension of KRR (OKRR) that can be trained with SGD without constraints in the amount of available training data.
- Higher number of trainable parameters \rightarrow higher flexibility.
- Tested on surface temperature retrieval using IASI data.

Future work:
- Theoretical and empirical comparison with Sparse Gaussian Processes ($SGPs$).
- Comparisons in terms of training time and prediction time.

Thank you!
Optimizing Kernel Ridge Regression for remote sensing problems

Gonzalo Mateo-García, Valero Laparra
Luis Gómez-Chova
Image Processing Laboratory (IPL), UVEG, Spain

Visit http://isp.uv.es/